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Abstract— Link and node reliability are important metrics in
wireless ad hoc networks. Therefore, evaluating and quantifying
reliability has become the cornerstone of research in this field.
Many existing wireless ad hoc network routing algorithms assume
the availability of precise reliability information. This, however, is
an unrealistic assumption given the dynamics of wireless ad hoc
networks. Also, due to frequent changes in topology, reliability
information is hard to collect, and oftentimes, inaccuracies can
creep in. Therefore, a realistic method is needed to evaluate
reliability by mitigating uncertainty in the estimation process.
In this paper, we propose a novel reliability estimation model,
account for uncertainty in the estimation, and design an un-
certainty mitigation scheme. We then illustrate the effectiveness
of our scheme in estimating reliability under various levels
of uncertainty using a utility-oriented routing algorithm as a
sample application. An extensive simulation study shows that
the mitigation scheme significantly increases path stability and
the long-term total benefit of the system.

Keywords: Reliability, uncertainty, utility-oriented routing, wire-
less ad hoc networks.

I. I NTRODUCTION

Wireless ad hoc networks operate in an infrastructure-less
wireless medium that is subject to message loss. This message
loss is usually represented by a single metric called link
reliability. Various routing optimization problems have been
formulated based on link reliability, with little or no informa-
tion on how to obtain creditable reliability values. Usually, the
reliability value is captured through a monitoring mechanism
where the behavior of a node (and the corresponding links)
is recorded by its neighbors. These mechanisms generally use
a simplistic reliability estimation model for each link(i, j),
which is the fraction of successful forwardings of link(i, j).

The reliability estimated in the above model has an uncer-
tainty component caused either by an inadequate number of
observations or by subtle changes in node behavior. A system-
atic way to characterize uncertainty in wireless ad hoc network
environments remains unexplored. In this paper, we define
an uncertainty metric to measure the possible variations and
inaccuracies in the quantified reliability, and propose a scheme
which uses dynamic threshold for uncertainty mitigation.

The dynamic threshold method operates in two phases. In
the first phase, each node calculates a threshold for uncertainty
which is decided based on its characteristics, associated cost,
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and expected return. A candidate set of nodes are chosen based
on their uncertainty level. In the second phase, the best path
is selected by applying the original optimization algorithm
on the candidate node set. In this paper, we strictly restrict
our discussions to the routing process. However, the proposed
schemes can be used for mitigating uncertainty in any other
optimization process in wireless ad hoc networks.

A utility-oriented routing model is used as a sample appli-
cation to show the validity of our reliability estimation model
using the uncertainty mitigation scheme. Different values of
benefit reflect different qualities or priority requirements of
routing requests. Each intermediate node has to incur a cost
to relay a packet (e.g. cost in terms of energy). If the packet is
lost during transmission, then no benefit will be obtained. In
this sample application model, utility, defined as the expected
benefit of a path, is the original routing metric. In computing
utility, reliability plays a critical role. Therefore, our reliability
evaluation model along with the uncertainty mitigation scheme
benefits nodes by helping them to make informed decisions.

II. RELIABILITY ESTIMATION MODEL

A highly dynamic environment and self-organizing nature
are two important characteristics of wireless ad hoc networks
that make the precise evaluation of reliability a critical issue
in routing, QoS management, and intrusion detection. They
make reliability information-gathering extremely challenging
as well. The former leads to frequent changes in reliability
while the latter enables nodes to change their behavior.

Neighbor monitoring is a unique mechanism that helps
to evaluate reliability. Exploiting the promiscuous nature of
broadcast communication in wireless media, nodes are able to
track the outgoing packets of their one-hop neighbors through
passive observation. When a nodei sends a message through
its neighborj, the forwarding behavior ofj can be monitored
by nodei. Similarly, j’s behavior can also be monitored by any
other nodek that is a common neighbor of bothi andj. If node
i forwards a packet to the destination throughj, i will classify
the observation result as a success wheni overhearsj forwards
that packet. Otherwise,i will consider it to be a failure. The
corresponding variable,α for successful forwarding andβ
for failed forwarding, is incremented accordingly. However, it
should be noted that a failure can occur for two reasons: failure
of the link (i, j) or the selfishness of nodej. In this paper we
shall not distinguish between these two types of failure. Each
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Fig. 1. The corresponding distributions.

node can then estimate its neighbor’s reliability based on its
accumulated observations using the Bayesian inference.

Bayesian inference is a statistical model in which evidence
or observations are used to update or to newly infer the prob-
ability that a hypothesis is true. Beta distribution,Beta(α, β),
is used here in the Bayesian inference. The beta distribution
is a family of continuous probability distributions defined on
[0, 1] differing in the values of their two non-negative shape
parameters,α andβ. To start with, each node in the network
has the priorBeta(1, 1) for all its neighbors. As shown in
Fig. 1, the priorBeta(1, 1) implies that the distribution of
the reliability metricp complies with the uniform distribution
on [0, 1], which indicates complete uncertainty as there are
no observations. When a new observation is made,α or β is
incremented. The priorBeta(α, β) is then updated.

III. U NCERTAINTY MEASUREMENT

Many reputation systems use the Bayesian inference to
reason nodes’ trust opinion. However, these trust opinions are
usually sharply divided into belief or disbelief. In this system,
we introduce the concept of uncertainty and use a triplet to
represent the node’s opinion towards reliability:(b, d, u) ∈
[0, 1]3 and b + d + u = 1 whereb, d, andu designate belief,
disbelief, and uncertainty respectively in the statement that
the transmission between two nodes is reliable. It should be
noted that the entire opinion space is divided into two regions:
certainty(1−u) and uncertaintyu. The(b, d, u) will be derived
from Beta(α, β) using the method below.

Two important attributes can be observed from the general
understanding of the concept of uncertainty. First, when there
is more evidence, which implies(α + β) is higher in our
reliability estimation model, it consequently lowers uncertainty
u. Second, when the evidence for success or failure dominates,
there will be less uncertainty when compared to the situation
in which there is equal evidence for both success and failure.
After examining the major statistical metrics of the Beta
distribution, we find that the normalized variance satisfies

these observations. Therefore, we defineu as follows:

u =
12 · α · β

(α + β)2 · (α + β + 1)
(1)

The numerator and denominator guarantee the latter and the
former attributes respectively. The variance is multiplied by a
constant 12, which makesu = 1 whenα = β = 1.

The total certainty is(1−u) which can be divided intob and
d according to their share of supporting evidence. Since the
proportion of supporting evidence for the reliable transmission
is α

(α+β) , b can be calculated as follows:b = α
(α+β) · (1− u).

Therefore,d = (1− u)− b = β
(α+β) · (1− u).

In the Bayesian procedure, the probability that the next
packet will be successfully forwarded by the corresponding
neighbor is given as:

p =
b

1− u
=

α

α + β
(2)

IV. U NCERTAINTY M ITIGATION SCHEME

The design of our reliability estimation model defines
uncertainty as the information ordering between no knowledge
and total certainty to reflect the degree of confidence in
the estimated reliability. Uncertainty is obviously unfavorable
when we want to use the estimated reliability. In this paper,
we propose a dynamic threshold scheme. To begin with, a
node receives a request to participate in routing. The node
then considers all possible next hop nodes and computes its
uncertainty towards them using the accumulated observations.
Then, thresholdT is calculated to reflect its acceptable un-
certainty level. Nodes with uncertainty above the thresholdT
are filtered out. From the remaining qualified nodes, the best
node is chosen after running the original routing algorithm.

In our model, T is dynamic. Note that a static imple-
mentation ofT is much easier. However, it is inflexible and
contradictory to the general experiences of the uncertainty mit-
igation decision process.T should be dynamically determined
based on the expected cost and return. This is necessary to
accommodate the varying criticality of transactions. Intuitively,
when the cost of a particular transaction is high, a node may
not be willing to accept higher uncertainty. Also, when the
associated returns are high,T will be pushed higher, and
consequently, nodes accept more uncertainty.

The cost and the return are computed by nodei after
receiving the request. The expected gain is represented as
G ∈ [0,∞]. Let C̃ represent normalized cost, and̃C equals
the ratio of the cost a node is required to invest in a given
transaction to the maximum amount of cost that a node can
invest in a single transaction. To summarize this discussion,
there are three parameters associated with each transaction:C̃,
G, andu. A combination of any two of them can be used to
derive the third. Formula 3 captures this idea well:

T = 1− C̃
G
λ (3)

Here,λ is the characteristic factor that reflects a node’s atti-
tude towards risk: conservative (a large number) or aggressive
(a small number). A higherλ will lead to a lowerT which
makes the filtering more conservative. According to Formula 3,
a largerC̃ will lead to a lowerT . On the other hand, a larger
G will lead to a higherT sinceC̃ ∈ [0, 1].
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V. A N APPLICATION: UTILITY -ORIENTED ROUTING

In utility-oriented routing [1], each routing is considered to
be a transaction. Utility, defined as the expected benefit of
the transaction, is chosen as the primary routing metric. This
model sets up an ideal platform to demonstrate the effective-
ness of our reliability estimation model and the uncertainty
mitigation scheme. This is because, in utility-oriented routing,
the primary routing metric is derived from reliability. In [1],
reliability is assumed to be static and obtainable. We consider
this to be a strong assumption. In our methodology, we relax
this assumption and use a realistic reliability estimation model
that takes into account the underlying uncertainty. In [1], there
are two parameters that influence path selection: topology and
packet value. However, using our reliability estimation model,
two additional parameters influence path selection: uncertainty
u and nodes’ attitudeλ.

A. Utility-Oriented Routing: Model Overview

We consider a sources that intends to send a packet to a
destinationk. s will get a benefitv if the packet is successfully
delivered tok. For each link(i, j) in the graph, there are
two associated properties: cost and reliability. Costcj

i is the
energy needed to send packets with fixed size fromi to j,
while reliability pj

i is the ratio of packets forwarded byj
and the packets sent byi. For illustration, we first consider
a single-link route froms to k with reliability pk

s and costck
s .

Sincek receives a packet with probabilitypk
s , s has the same

probability of getting the benefitv at the costck
s . Note that

s getsv if and only if the packet is delivered tok. From the
economic point of view, the expected utilityR of this route is
the difference between the benefit and the route’s cost, i.e.,

R = v · pk
s − ck

s (4)
Consider the multi-hop route< s = 1, · · · , k − 1, k >.

Here, the utility is calculated as follows:

R = v ·
k−1∏

j=1

pj+1
j −

k−1∑

i=1

ci+1
i

i−1∏

j=1

pj+1
j (5)

A simple example in Fig. 2 illustrates the impact of topol-
ogy, packet value, uncertainty, and nodes’ attitude. Assume
that in the following cases, all parameters are the same except
those listed in the column ‘different parameters’ in Table 2.
There are four possible route choices:s − i − j − k (1),
s− i− j′ − k (2), s− i′ − j − k (3), ands− i′ − j′ − k (4).
The last column in Table 2 indicates the path that is intuitively
preferable for the scenario.

The topology of the network is reflected by the cost and
reliability metric of each pair of nodes. The path with lower
cost and/or higher reliability is always preferable. The influ-
ence of topology is shown in Case 1. In Case 2, one path has
lower cost and lower reliability, and the other path has higher
cost and higher reliability. The value of the packet will affect
the decision of which path is preferable. When the estimated
reliability metric is used, even when the topology parameters
and packet value are the same, the paths may not be equally
preferable as they have different underlying uncertainty. In
Case 3,s− i′ − j − k is preferable over the other three paths
since it has the lowest uncertainty. The impact of a node’s
attitude towards risk on route selection is presented in Case 4.
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Fig. 2. An example illustrating the impact of different parameters on path
selection. The cost and actual reliability values are shown on the link.

Table 2 Sample Cases
Case c p λ v Different Parameter Path

1 20 0.5 0.1 100 cj
i = 10 (1)

20 0.5 0.1 100 pj
i = 0.9 (1)

2 20 0.5 0.1 100 cj′
i = 10, pj

i = 0.6 (2)

20 0.5 0.1 200 cj′
i = 10, pj

i = 0.6 (1)
3 20 (10,10) 0.1 100 pj

i′ =(99,99) (3)

4 20 (10,10) 0.1 100 λj′
i′ = 0.05 (4)

B. Application of the Reliability Estimation Model

A neighbor monitoring mechanism is employed to collect
information for estimating reliability. While sending packets
to its next-hop neighborj, a nodei will also try to over-hear
and count the number of packets thatj further forwards. Ifj
forwards a packet sent byi, theni will consider this a success-
ful forwarding and incrementαj

i . Otherwise,i incrementsβj
i .

Wheni needs to evaluate its utility and uncertainty for routing
purposes, it will calculate(b, d, u) from the recordedαj

i and
βj

i using the Beta function. Once the triplet is computed,
Formula 2 is used to compute the estimated reliability. To keep
the integrity of this evaluation method, the destination node
should send an acknowledgement to its one-hop neighbors
when it receives a packet, since it does not further forward.

C. Application of the Dynamic Threshold Scheme

The dynamic threshold scheme is an iterative approach in
which each node will filter requests by the dynamic uncertainty
threshold and calculate the remaining utility. The utilityR
is then broadcast in the neighborhood. Nodes in the network
should have a maximum possible transmission range. There-
fore, each node can calculate the amount of energycmax

associated with the maximum possible communication range.
Therefore, the normalized cost̃C is: C̃ = cj

i/cmax. Expected
gain G is the other important metric, which is the expected
utility Ri in this model.T can be calculated using Formula 3.

Algo. 1 exploits the idea similar to Dijkstra’s shortest
path algorithm while using utility as the routing metric and
applies the uncertainty mitigation scheme. All nodes except the
destination will have the zero initial utility and the unselected
status at the beginning. The algorithm works backward from
the destination. A node will be marked as selected when it has
the largest utility among all the unselected nodes and relax
its neighbors. As shown in Fig. 2, nodei, when relaxed by
nodej, calculates(Ri)′ and compares with the originalRi. If
(Ri)′ > Ri, then i calculatesT according to Formula 3 and
compares it withuj

i . It then follows the rules below:
1) If uj

i > T , reject.u is higher than acceptable.
2) If uj

i ≤ T , accept.Ri ← (Ri)′.
Although Algorithm 1 is centralized, a distributed imple-

mentation can be realized by using a back-off timer on
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Algorithm 1 Dynamic Threshold

1: Initialize;
2: while s is not selecteddo
3: Find nodej with the largestRj in the nodes with status unselected;
4: Mark j as selected;
5: For j’s each neighbori with status unselected,Relax(j, i);
6: end while

Relax(j, i)
1: Calculate utility:(Ri)

′ = Rj · pj
i − cj

i ;

2: Find the uncertainty threshold:T = 1− C̃
G
λ ;

3: if (Ri)
′ ≥ Ri anduj

i ≤ T then
4: UpdateRi ← (Ri)

′;
5: end if;

each node. The value of the back-off timer on each node
is set to (v − Ri), which reflectsi’s current utility. The
distributed implementation can be gracefully integrated into
reactive routing protocols, such as AODV or DSR.

Since the actual reliability in the network is highly dynamic
and the observation results accumulate, the route discovery
phase needs to be executed periodically. The route refresh
period should be defined in the network’s policy and the
appropriate value for it is decided by the network’s application.
A smaller route refresh period leads to a more precise route
selection while incurring larger route discovery costs.

VI. A NALYSIS

We make some assumptions in this section to facilitate the
analysis. 1) Nodes in the maximum transmission range of each
other are considered to be in one-hop neighborhood. 2) Nodes
can use adaptive power control when transmitting a package.
3) Nodes’ actual reliability complies to the Bernoulli trial.

A. General Analysis

The uncertainty metric provides more information about the
possible fluctuation in reliability estimation. Because the route
discovery phase needs to be repeated periodically and the
observation results accumulate, the selected best route may
change. Path selection stability is a measure of the frequency
of change in the selected path. The underlying reason for this
change is the accumulating observations and the corresponding
change in the estimated reliability metric.

Attribute 1: (Selection Stability): The dynamic threshold
scheme increases path selection stability.

As the evidence accumulates, the value of the estimated
reliability stabilizes. If the variation is large enough, another
route will become the best path under the given routing
criterion, thereby causing changes in the selected path.

The dynamic threshold method will filter out nodes that are
sensitive to changes in reliability before they are selected based
on their high utility. Using the above setup, if nodei is more
sensitive to reliability changes and its uncertainty towardsk is
large enough in the beginning, it will be filtered out and the
change in the selected path will not occur.

Attribute 2: (Eventual Optimality) : After accumulating
enough observations, the utility-oriented routing mechanism
using the proposed uncertainty mitigation scheme will achieve
path selection optimality.

The observations are represented as (α, β). After a suffi-
ciently long time, the number of observations increases to a
large number, sayα + β → ∞. Then the uncertainty metric
uj

i → 0. For the dynamic threshold scheme,uj
i < T is always

true becauseT > 0. In this scenario, no node will be filtered
out. Therefore, Algo. 1’s eventual optimality is equal to the
optimality of the algorithm that selects a path with maximum
utility. The proof of this optimality is in our previous work [1].

The uncertainty mitigation scheme has another favorable at-
tribute which offers more flexibility to users. It reflects nodes’
conservative or aggressive attitude by using the factorλ.

B. Simulation Evaluation

In our simulation, we compare the utility-oriented routing
method with/without the uncertainty mitigation scheme. The
routing algorithms include: (1) Optimal method, (2) Dynamic
threshold scheme, and (3) MaxUtility [2] with our reliability
estimation model. (3) is a special case of dynamic threshold
in which a fixed estimated reliability is used without consid-
ering the uncertainty. The optimal method is the MaxUtility
algorithm using the actual reliability.

All simulations are carried out on a customized simulator.
We set up the simulation in a900m × 900m area. The
actual stability of each link is randomly generated (uniform
distribution) in the range[0, 1]. For each set of specified
parameters, we run each algorithm 100 times and use the
average value of the results to evaluate the performance. The
packet valuev = 5000. λ is uniform for the entire network to
reflect the network’s risk attitude with a default value of 0.5.
Each node accumulatesl observations before route discovery
wherel is a random number in[0, 15].

After all nodes in the network complete the accumulation
of observations of their neighbors, the route discovery phase
begins. Each algorithm selects the best path and1000 packets
are transmitted over each selected path for which the total cost,
delivery ratio, and packet value are recorded.

C. Simulation Results

We adjust the number of nodes in the network to compare
the performance of the different schemes. The number of
nodes determines the node density, which in turn determines
the communication cost and node degree.

In Fig. 3(a), the delivery ratio of the optimal method is
higher than the other two methods that use estimated reliability
based on neighbor monitoring. The estimated reliability metric
is inaccurate and contains uncertainty. Hence, there is a dif-
ference between the optimal path and the selected path for the
other two algorithms. Because our scheme avoids nodes with
high uncertainty, it achieves a better delivery ratio compared to
MaxUtility. Fig. 3(b) shows the average utility. It is clear that
our uncertainty mitigation scheme outperforms the MaxUtility
algorithm, which omits uncertainty in the reliability evaluation.

Fig. 4(a) illustrates the change in average utility when obser-
vations accumulate. When more observations are accumulated,
the estimation of the reliability metric becomes more accurate
and tends to stabilize. Consequently, the uncertainty in estima-
tion is reduced. Therefore, the differences between the optimal
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method and the uncertainty mitigation scheme decrease when
the number of observations before route discovery increases.

The results in Fig. 4(b) indicate that: using the same scheme,
the answer as to whetherλ = 1.0 or λ = 0.1 leads to
better average utility is purely random. It implies that, although
considering uncertainty helps us in making informed decisions,
the answer as to ‘whether the risk seeking or evading attitude
is better’ depends on the specific application domain.

Fig. 5(a) shows another advantage of our uncertainty miti-
gation scheme. In this simulation, we run the algorithms with a
route refresh period of 30 observations. Using the uncertainty
mitigation scheme, a great improvement in path stability can
be seen, as uncertainty is considered beforehand.

Although the nodes’ attitude cannot improve the average
utility, it has a strong impact on path stability. From Fig. 5(b)
we can see that the path stability increases asλ increases.
When nodes are conservative, the paths are more stable.

The simulation results can be summarized as follows: 1)
Using the uncertainty mitigation scheme can improve the
delivery ratio and total utility. 2) The uncertainty mitigation
scheme is especially useful when the number of observations
are small. 3) The value ofλ has no significant impact on utility
improvement, however it does affect the path stability. 4) The
uncertainty mitigation scheme increases path stability if the
route discovery algorithm executes periodically.

VII. R ELATED WORK

Reliability is an important metric in wireless ad hoc net-
works [3]. Many routing algorithms [1] [2] [4] consider the
reliability metric and compute their routing metrics on the
basis of quantified reliability. Most of them assume a prede-
termined, fixed value for reliability. The method of collecting
reliability information in a distributed manner and evaluating
the inaccuracies and uncertainty in the collected value remains

undiscussed. We develop and apply the uncertainty-centric
reputation system in reliability estimation. This uncertainty-
centric system is unique [5], as only a few of the existing rep-
utation systems [6] [7] explicitly consider the uncertainty [8].

We use utility-oriented routing as a sample application in
this paper. Other works also use utility as the optimization
objective. A price-based scheme is presented in [9] to ef-
fectively allocate resources among multiple multi-hop flows.
In [10], a market-based approach is proposed to efficiently
allocate bandwidth. Our work [1] [2] combines reliability with
link cost and designs an optimization model to maximize
the expected utility. As the uncertainty mitigation scheme is
logically compliant with the idea of utility, it can be applied
to all of the existing utility-oriented routing algorithms.

VIII. C ONCLUSION AND FUTURE WORK

Evaluating and quantifying reliability is of critical impor-
tance in wireless ad hoc networks. Many existing optimiza-
tion algorithms assume the availability of precise reliability
information, which is unrealistic due to the dynamics of ad
hoc networks. We present a novel reliability estimation model
that accounts for uncertainty, and the uncertainty mitigation
scheme. An extensive analysis and simulation study shows
that the applicability of the reliability estimation model and
the uncertainty mitigation scheme. In our future research, we
plan to investigate opportunistic routing methods to reduce the
path re-selection cost of our schemes.
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